The torsion angles are given in Fig. 2. The piperidine rings A, B, C and D have chair, chair, boat and chair conformations, respectively. The position of the phenyl ring can be conveniently described by the torsion angles along $\mathrm{C}(2)-\mathrm{C}(18)$ (see Fig. 2). The corresponding torsion angles in 2-phenylsparteine $N(16)$-oxide perchlorate (Małuszyńska \& Okaya, 1977) have very similar valules of 137.0 (6) and $76.8(8)^{\circ}$; a similar orientation of the phenyl ring was also observed in 2 -(p-tolyl)-2-dehydrosparteine [torsion angles $132 \cdot 9(7)$ and $-44 \cdot 6(9)^{\circ}$].

A stereoview of the unit-cell contents of (I) is presented in Fig. 3. No intermolecular contacts shorter than van der Waals distances were observed.

We are grateful to Professor M. Wiewiórowski for suggesting this investigation, to Dr Wł. Boczoń for supplying the compound and to Dr M. Wieczorek, of the Technical University, Łódź, for collecting the diffractometer data. This study was supported by the Polish Ministry of Science and Higher Education, Project RP II-10.

References

Allmann, R. (1977). In Homoatomic Rings, Chains and Macromolecules of Main Group Elements, edited by A. Rheingold. Amsterdam: Elsevier.
Boczoń, We. (1981). Pol. J. Chem. 55, 339-351.
Boczoń, We., Kaluski, Z. \& Maeuszyńska, H. (1987). Bull. Acad. Pol. Sci. Sér. Sci. Chim. 35, 541-550.
Bohlmann, F., Schumann, D. \& Arndt, C. (1965). Tetrahedron Lett. pp. 2705-2711.
Kaluski, Z., Skolik, J. \& Wiewiórowski, M. (1978). Proceedings, Precongress Symposium on Organic Crystal Chemistry, Dymaczewo, Poland, pp. 321-343.
Klyne, W., Scopes, P. N., Thomas, R. N., Skolik, J., Gawroński, J. \& Wiewiórowski, M. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 2565-2570.
Maluszińska, H., Boczoń, We. \& Kaluski, Z. (1986). J. Cryst. Spectrosc. Res. 16, 687-694.
Maluszyńska, H. \& Okaya, Y. (1977). Acta Cryst. B33, 3889 3891.

Motherwell, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Skolik, J., Krueger, P. J. \& Wiewiórowski, M. (1970). J. Mol. Struct. 5, 461-475.
Szymczazk, A. (1983). Thesis, Adam Mickiewicz Univ., Poznań, Poland.

Non-Natural 14-Hydroxy Steroids. I. Methyl 14 β-Hydroxy-1,7,17-trioxo-5 $\beta, 8 \alpha, 9 \beta$-androstan-10 β-oate

By André G. Michel,* \dagger Résean Ruel \ddagger and Nadine Michel-Dewez \dagger
Laboratoire de chimie structurale and Laboratoire de chimie organique, Université de Sherbrooke, Sherbrooke, Québec Canada J1K $2 R 1$

(Received 28 December 1988; accepted 15 March 1989)

Abstract

C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}, M_{r}=362 \cdot 42\), monoclinic, $A 2 / n$, $a=16.6256$ (8), $\quad b=10.6293$ (5),$\quad c=20.3059$ (6) \AA, $\beta=91.515(3)^{\circ}, \quad V=3587.17$ (7) $\AA^{3}, \quad D_{x}=$ $1.342 \mathrm{Mg} \mathrm{m}^{-3}, \quad Z=8, \quad \lambda(\mathrm{Cu} K \bar{\alpha})=1.54056 \AA, \quad \mu=$ $0.77 \mathrm{~mm}^{-1}, F(000)=1552$, room temperature, final $R=0.039$ for 3207 observed reflections. The nonnatural steroid compound bears a methoxycarbonyl group at $\mathrm{C}(10)$. The relative stereochemistry is cis for the A / B ring junction, syn between $\mathrm{MeO}_{2} \mathrm{C}-\mathrm{C}(10)$ and $\mathrm{H}-\mathrm{C}(9)$, trans for the B / C ring junction, anti between $\mathrm{H}-\mathrm{C}(8)$ and $\mathrm{HO}-\mathrm{C}(14)$ and cis for the C / D ring junction, and an all-chair conformation is adopted.

Introduction As part of a study aimed at the synthesis of various natural and non-natural 14-hydroxy

[^0]steroids, compound (1) was obtained upon acidic or alkaline treatment of the tetraketone (2) (Ruel \& Deslongchamps, 1988). One could predict the stereochemical identity of the $\mathrm{C}(14)$ carbon center as that shown in structure (1), based on related work (Yates, Douglas, Datta \& Sawyer, 1988) which reported the synthesis of the 14β-hydroxy steriod (3) by a similar approach. Unequivocal assignment of the structural identity of the steroidal compound (3) was made by X-ray analysis (Douglas, Sawyer \& Yates, 1987). The present crystallographic analysis was undertaken to confirm the predicted structure of steriod (1) (Fig. 1).

Experimental. Crystal $0.20 \times 0.15 \times 0.30 \mathrm{~mm}$; EnrafNonius CAD-4 diffractometer graphite-monochromator, $\mathrm{Cu} K \bar{\alpha}$ radiation; cell dimensions were obtained from 28 reflections with 2θ angles in the range $80 \cdot 0-120 \cdot 0^{\circ}$. The $\omega / 2 \theta$ scan mode was used for data collection at a constant scan speed of $4^{\circ} \mathrm{min}^{-1}$.
(c) 1989 International Union of Crystallography

A total of 8255 reflections accepted, 7574 symmetry equivalents averaged ($R_{\text {merge }}=0.016$), 3507 independent reflections up to $2 \theta_{\text {max }}=143 \cdot 5^{\circ}$ corresponding to $-20 \leq h \leq 20,0 \leq k \leq 12,0 \leq l \leq 24$. 3207 reflections satisfying $I \geq 2.5 \sigma(l)$ were considered as observed. No correction was made for absorption. 172 standard reflections, $0 \cdot 1 \%$ intensity variation. The NRCVAX system (Gabe, Lee \& Le Page, 1985) was used for all calculations. The structure was solved by the application of direct methods and refined by full-matrix least squares on F. Anisotropic thermal parameters were refined for non-H atoms. The H atoms were located from a difference map, their positions and isotropic temperature factors were refined. $R=0.039, w R=0.031, S=2.921$. Weights based on counting statistics were used. the maximum Δ / σ ratio was $0 \cdot 133$. In the last difference Fourier map, the deepest hole was $-0.230 \mathrm{e} \AA^{-3}$, and the highest peak $0.230 \mathrm{e} \AA^{-3}$. Atomic scattering factors stored in the NRCVAX program were those of Cromer \& Waber (1974).

Discussion. Table 1 gives the final atomic parameters with their $B_{\text {eq }}$ values.* Fig. 1 gives the molecular formula for (1) and (2) and atom numbering, Fig. 2 shows a perspective view of the molecule. Bond angles are given in Table 2.

The crystal structure shows that rings A, B and C have chair conformations, the C / D ring junction is cis and ring D is in a $\mathrm{C}(14) \alpha$-envelope conformation.

[^1]Fig. 1. Molecular formula and atom numbering.

Table 1. Fractional coordinates and $B_{e q}$ values for non -H atoms with e.s.d.'s in parentheses

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{O}(1)$	0.81491 (7)	0.86634 (12)	0.98739 (5)	$4 \cdot 30$ (6)
$\mathrm{O}(2)$	0.76842 (7)	$1 \cdot 22615$ (9)	0.82744 (5)	$3 \cdot 65$ (5)
O(3)	0.89053 (6)	1.12420 (10)	0.76017 (5)	$3 \cdot 16$ (5)
O(4)	1.06167 (7)	0.92642 (11)	0.91931 (6)	$4 \cdot 22$ (5)
O(5)	0.68138 (7)	0.71950 (10)	0.80177 (5)	3.63 (5)
O(6)	0.75296 (7)	0.63857 (9)	0.88706 (5)	$3 \cdot 53$ (5)
C(1)	0.75219 (10)	0.84392 (14)	0.95820 (8)	3.00 (6)
C(2)	0.67769 (11)	0.80471 (18)	0.99406 (8)	3.74 (8)
C(3)	0.60719 (12)	0.89496 (19)	0.98020 (9)	4.14 (8)
C(4)	0.59336 (10)	0.91149 (17)	0.90622 (9)	$3 \cdot 61$ (8)
C(5)	0.66980 (9)	0.95299 (14)	0.87187 (8)	2.78 (6)
C(6)	0.69564 (10)	1.08568 (15)	0.89394 (9)	$3 \cdot 30$ (7)
C(7)	0.76919 (9)	$1 \cdot 12868$ (14)	0.85916 (7)	2.78 (6)
C(8)	0.84179 (9)	1.04228 (13)	0.86477 (7)	2.42 (6)
C(9)	0.81598 (9)	0.90602 (13)	0.84598 (7)	2.48 (6)
C(10)	0.74060 (9)	0.86008 (13)	0.88343 (7)	2.44 (6)
C(11)	0.88845 (10)	0.81746 (15)	0.85112 (9)	$3 \cdot 11$ (7)
C(12)	0.95532 (10)	$0 \cdot 86202$ (15)	0.80784 (8)	3.04 (7)
C(13)	0.98304 (9)	0.99509 (14)	0.82310 (7)	$2 \cdot 68$ (6)
C(14)	0.91440 (9)	1.09258 (13)	0.82635 (7)	$2 \cdot 49$ (6)
C(15)	0.95454 (10)	$1 \cdot 20270$ (15)	0.86458 (8)	3.01 (7)
C(16)	1.00758 (11)	1.13883 (17)	0.91756 (8)	3.46 (7)
C(17)	1.02325 (9)	1.00818 (16)	0.89119 (8)	3.04 (7)
C(18)	0.71917 (9)	0.73259 (14)	0.85241 (7)	2.86 (6)
C(19)	0.74961 (14)	0.51374 (17)	0.85842 (11)	4.65 (10)
C(20)	1.04625 (11)	1.03411 (18)	0.77267 (9)	3.74 (8)

Table 2. Molecular geometry
(a) Bond lengths (\AA) with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.2094(19)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.5185(21)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.2199(18)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.5553(20)$
$\mathrm{O}(3)-\mathrm{C}(14)$	$1.4311(17)$	$\mathrm{C}(8)-\mathrm{C}(14)$	$1.5497(21)$
$\mathrm{O}(4)-\mathrm{C}(17)$	$1.2125(19)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5613(22)$
$\mathrm{O}(5)-\mathrm{C}(18)$	$1.1989(17)$	$\mathrm{C}(9)-\mathrm{C}(11)$	$1.5304(22)$
$\mathrm{O}(6)-\mathrm{C}(18)$	$1.3373(18)$	$\mathrm{C}(10)-\mathrm{C}(18)$	$1.5324(20)$
$\mathrm{O}(6)-\mathrm{C}(19)$	$1.4493(21)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.5114(25)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.512(3)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.5170(22)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.5350(20)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.5442(21)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.535(3)$	$\mathrm{C}(13)-\mathrm{C}(17)$	$1.5261(21)$
$\mathrm{C}(3-\mathrm{C}(4)$	$1.524(3)$	$\mathrm{C}(13)-\mathrm{C}(20)$	$1.5433(24)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5306(24)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.5462(21)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5377(22)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.5314(23)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.5497(21)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.5135(24)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.4996(24)$		

(b) Valence angles (${ }^{\circ}$) with e.s.d.'s in parentheses			
$\mathrm{C}(18)-\mathrm{O}(6)-\mathrm{C}(19)$	117.51 (13)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(18)$	109.50 (11)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.67 (14)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(18)$	$104 \cdot 91$ (12)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	123.14 (15)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$110 \cdot 94$ (13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$115 \cdot 10$ (13)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	113.42 (13)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.76 (14)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$114 \cdot 43$ (12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110.33 (15)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	$113 \cdot 17$ (12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.14 (14)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(20)$	108.88 (13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.13 (14)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(17)$	101.93 (12)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	112.58 (13)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(20)$	111.40 (12)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	109.58 (12)	$\mathrm{C}(17)-\mathrm{C}(13)-\mathrm{C}(20)$	$106 \cdot 67$ (13)
$\mathrm{C}(5)-\mathrm{C}) 6$ - $\mathrm{C}(7)$	111.55 (13)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(8)$	$110 \cdot 70$ (11)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	120.68 (14)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	107.72 (11)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	123.40 (14)	$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	$113 \cdot 52$ (12)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	115.90 (13)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	$112 \cdot 11$ (12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	109.34 (12)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(15)$	$109 \cdot 88$ (12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	112.44 (12)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$102 \cdot 70$ (12)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	114.29 (12)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$104 \cdot 48$ (12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	113.05 (12)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	105.04 (13)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	110.14 (12)	$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(13)$	125.03 (15)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	114.52 (12)	$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(16)$	$125 \cdot 78$ (14)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	107.22 (12)	$\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(16)$	$109 \cdot 20$ (13)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	115.81 (12)	$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{O}(6)$	124.60 (14)
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(18)$	109.23 (12)	$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{C}(10)$	124.47 (13)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	110.08 (11)	$\mathrm{O}(6)-\mathrm{C}(18)-\mathrm{C}(10)$	$110 \cdot 78$ (12)

Fig. 2. ORTEP stereoview (Johnson, 1976).

Rings C and D are very similar to their homologues in compound (3) (Douglas et al., 1987) leading to the conclusion that the main influence of the $1 \beta, 4 \beta$ methano bridge present in compound (3) is to force a boat conformation on rings A and B.
The chair conformation of ring B contributes to the folding of the molecule with rings A and D facing towards each other. The resulting overall conformation of the steroid (Fig. 3) is rather similar to that of compound (3). An intramolecular hydrogen bond between the $\mathrm{C}(7)-\mathrm{O}(2)$ carbonyl group and the $\mathrm{O}(3)-\mathrm{H}$ contributes to the stabilization of the molecular structure and particularly the chair conformation: $\quad d[\mathrm{O}(2) \cdots \mathrm{O}(3)]=2 \cdot 703(1), \quad d[\mathrm{O}(2) \cdots$ $\mathrm{HO}(3)]=1.98(1), \quad d[\mathrm{O}(3)-\mathrm{HO}(3)]=0.86(1) \AA$, $\mathrm{L}[\mathrm{O}(2) \cdots \mathrm{HO}(3)-\mathrm{O}(3)]=141\left(1^{\circ}\right)$.

Fig. 3. Overall conformation of the steroid, viewed parallel to the least-squares mean plane through rings B and C (scale in \AA).

The distance between these two functions is much greater in compound (3) where ring B is in a boat conformation (Douglas et al., 1987). No abnormally short intermolecular contacts were observed in the crystal packing.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, edited by J. A. Ibers \& W. C. Hamilton, Table 2.2B, pp. 99-101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Douglas, S. P., Sawyer, J. F. \& Yates, P. (1987). Acta Cryst. C43, 1372-1375.
Gabe, E. J., Lee, F. L. \& Le Page, Y. (1985). The NRCVAX Crystal Structure System. In Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 167-174. Oxford: Clarendon Press.
JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ruel, R. \& Deslongchamps, P. (1988). Unpublished results.
Yates, P., Douglas, S. P., Datta, S. K. \& Sawyer, J. F. (1988). Can. J. Chem. 66, 2268-2278.

Structure of 2-Cyclohexylamino-4,6-dimethoxy-1,3,5-triazine

By Marek L. Gıówka and Iwona Iwanicka
Institute of General Chemistry, Technical University of Łódź, Źwirki 36, 90-924 Łódż, Poland

(Received 6 February 1989; accepted 23 March 1989)

Abstract

C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}, M_{r}=238 \cdot 4\), triclinic, $P \overline{\mathrm{I}}, a=$ 6.894 (4),$\quad b=8.138$ (1), $\quad c=12 \cdot 201$ (6) $\AA, \quad \alpha=$ 108.67 (2), $\quad \beta=90.42(3), \quad \gamma=105.41(1)^{\circ}, \quad V=$ $621.97 \AA^{3}, Z=2, D_{x}=1.272 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.71069 \AA, \mu=0.8 \mathrm{~mm}^{-1}, F(000)=256$. The structure was solved by direct methods and refined to $R=$ 0.069 for 2225 observed intensities. Delocalization of the s-triazine π electrons ranges over adjacent O and N atoms resulting in the formation of a planar 2-amino-4,6-dimethoxy-1,3,5-triazine system with

stacking of triazine rings and perpendicular orientation of the cyclohexane mean plane in relation to the triazine plane.

Introduction. Derivatives of alkylamino-1,3,5triazines have been used as herbicides. It has been suggested that a possible mechanism by which triazines are absorbed by soil mineral matter is the formation of coordination complexes with exchangeable cations of clay minerals (Hance, 1969).

[^0]: *To whom correspondence should be addressed.
 \dagger Laboratoire de chimie structurale.
 \ddagger Laboratoire de chimie organique.

[^1]: * Lists of structure factors, thermal parameters, H-atom parameters and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52047 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

 (3)

